From Drupal 7 to Drupal 8

Features vs. Configuration
Management

Fabian Bircher - fabian@nuvole.org

a 100% Drupal company

53 Our Distributed Team

Italy Belgium Czech
Republic

(s Our Clients

(D Our Projects

International organisations
Institutions

Fast delivery: several developers working simultaneously
on the same site

Frequent configuration changes: need for safe updates

© Challenges We Face

« Remote collaboration on site development

« Keeping track of all configuration changes during
development

« Pushing upgrades to production sites

Chapter 1

@O0DOO

The Evolution of

Code-Driven Development
in Drupal 8

N The long march to a
"code-driven" Drupal

« Historically, Drupal has kept both configuration and content
in the same database.

Every time you click in the administrative interface, no record is kept.
« Drupal 6: Features appears, with the possibility to export
configuration to PHP code

« Drupal 7. Features support is mature, but still relying on
third parties and incomplete

« Drupal 8: Configuration and content are separated,
configuration is text-based

H88

The database-driven
workflow disadvantages

e Default in Drupal 6 and Drupal 7 (core)

« Standard approach: you click, you save, Drupal saves to
database and forgets

« Bad: Mixing configuration and content
« Bad: Losing track of configuration changes
o Theoretically still possible in Drupal 8!

The Features-driven
workflow disadvantages

« A structural flaw: to package configuration into modules,
you need to make it exportable to "code”

o Features is very good for packaging, not as good for
exporting; but there's no packaging without exporting

« Not everything is exportable/traceable

e You must "whitelist" elements to be tracked: you never
have the whole site under control

Code-driven is not just
Features

o It’s a global technical choice

« For example, it includes makefiles and profiles, still
applicable in D8

o Keywords: text-based configuration, traceability,
repeatability, reuse

&

New in Drupal 8

Configuration Management

)

A guided example of
Configuration Management

)

Reference Use Case

Modify the configuration of a production site:

« Keeping the site online all the time.

« Developing/testing the new configuration on a
development copy.

« Exporting the configuration changes from development
and importing them into production.

| Step10of 6

Clone Site to Dev

Production Development
o Install Site e Restore the backup
« Full backup: e (orinstall with
» Database config_installer)

= Full Drupal tree
= Files

| Step 2 of 6

Modify Configuration

Production Development

« Site operates normally:
= NeW users

= New CO nte nt Home » Administration » Configuration » System

Site information -

¥ SITE DETAILS

Site name*
Drupal 8

| Step 3 of 6

Export Configuration

Production Development

o Site operates normally. Eexport -
= neW users Synchronize Single Import/Export Full Import/Export

| neW CO nte nt Import Export

Home » Administration » Configuration » Development » Synchronize

Use the export button below to download your site configuration.

Export

| Step 4 of 6

Import into Staging

Production

Import v
Synchronize Single Import/Export Full Import/Export
Import Export

Home » Administration » Configuration » Development » Synchronize

Use the upload button below.

Select your configuration export file
Sfoglia... = Nessun file selezionato.

This form will redirect you to the import configuration screen.

Upload

Development

Step 5 of 6

Review Changes

Production Development

OoLD NEW
uuid: 29d3d74e uuid: 29d3d74e
name: localhost + name: 'Drupal 8'

slogan: " slogan: "

| Step 6 of 6

Apply Changes

Production Development

Synchronize 7~

Synchronize Single Import/Export Full Import/Export

Home » Administration » Configuration » Development

The configuration was imported successfully.

How this would have
worked in Drupal 7

o Clone site to development environment

« Create a feature exporting the site name variable
« Development: update the feature

« Transfer the feature to Production

« Production: enable/revert the feature

drush

DRUpal SHell: everybody loves!

Drupal 8 & drush 7

Both not stable yet, but matching beta releases
A new installation method: composer

| Step 3 of 6 — Drush Style

Export Configuration

Development

$ drush config-export

The current contents of your export directory
(sites/default/files/config H6raw/staging) will be deleted. (y/n): vy
Configuration successfully exported to [success]
sites/default/files/config H6raw/staging.

| Step 5 of 6 — Drush Style

Review Changes

Production

$ drush config-import --preview=diff
Configuration successfully exported to /tmp/drush tmp xy. [success]
diff -u /tmp/drush tmp xy/system.site.yml sites/.../staging/system.site.yml
--- /tmp/drush tmp xy/system.site.yml
+++ sites/default/files/config H6raw/staging/system.site.yml
@ -1,5 +1,5 @@
uuid: ca04efad4-51bf-4d12-8b00-e7b244b97aef
-name: 'Drupal 8'
+name: 'DDD 2015
mail: drupal@example.com
slogan: '
page:
Import the listed configuration changes? (y/n):

Chapter 2

@

Inner workings of

Configuration Management
and Features

Use case

Features Configuration Management
« A collection of logically Reference for the whole site
related Drupal elements configuration, development to
. Packaged into PHP code, production
using hooks

« Exportability is a
precondition to packaging

Configuration format

PHP YAML
Imperative o Declarative
Interpreted « Parsed
Can break site if corrupted Cannot break anything if corrupted
Located in folders for o Located in specific folders
modules for config
Treated as modules « Treated as data (like Rules

JSON in D7)

<, Support

Optional Mandatory
« Modules must offer support « Core configuration

for Features . The only way to supply
. No guarantees configuration

Ve Configuration and
modules

Drupal 7 Drupal 8
o Features are special « Modules provide initial
modules values
« Once a Feature is enabled, -« Inthis sense, every module
its configuration is tracked is a Feature
forever . Configuration is decoupled

from modules after
installation

gt Components selection

Drupal 7 Drupal 8
o Explicitly listed in info file « All configuration is tracked

e Rest is not tracked « Configuration is saved per
config entity
« Can be individually
imported/exported

« Config synchronisation
requires all files to be
present (missing = deleted)

% Configuration staging

Drupal 7 Drupal 8
« Feature states: normal, « Active store and staging
overridden, needs review store (multiple stores
« Operations: features possible)
update/revert o Operations: import and
. Diff available export

o Diff available

e.%e.
Drush workflow

Drupal 7 Drupal 8 (with drush 7.x-dev)
o drush features-update o drush cex
o drush features-revert o drush cim

D&

Cross-site compatibility

Drupal 7 Drupal 8
« Write once, deploy o Specific to multiple
anywhere instances (dev, prod) of the
« A feature is ready to be same site

deployed on multiple sites « This is the CMI use case

« Configuration Management
relies on UUIDs

G]

Boundaries of configuration

Drupal 7 Drupal 8
« Entities through entity api, « Configuration
CTools plugins « Content
« Variables with Strongarm « State
« Content with . All clearly defined

features uuid

« Menu links, custom and
contrib modules can be
problematic

i

Features done right?

Drupal 7 Drupal 8
« Not optimal o Clean

o A bit "forced" at times since « Native
itis not native in Drupal 7, Not as powerful as

D/+Features yet

Chapter 3

1T\ /11
How to build

Re-usable components

Use case

Drupal 7: Features Drupal 8: CM
« Package configuration « Deploy configuration
« Reuse configuration « Tracking configuration
« Focus on efficiency « Focus on reliability

We want both, efficiency and reliability

& Drawbacks

Drupal 7: Features Drupal 8: CM
e Not designed for « Designed for deployment
deployment . Not designed for packaging
» Used for deployment . Possible shortcomings
e It drives people crazy when creating re-usable

configuration.

Features 8.x-3.X

« Goes back to the core mission of Features: package
functionality for re-use.

« No more project specific features!
« Under development, alpha available.

« Phase2 blog post Announcing Features for Drupal 8
(http://www.phase2technology.com/blog/announcing-
features-for-drupal-8/)

e Development module, not for production sites using CMI

http://www.phase2technology.com/blog/announcing-features-for-drupal-8/

Chapter 4

&

Configuration Management

For Developers

SESSION -

STATE »

CONFIG =+

CONTENT =

FILES + [

CODE -+

Drupal 7

Database + HTTP

@ An overview

Drupal 8

Database + HTTP

Database

Key-Value store (usually Database)

Active config store (Database or files)

Database

Filesystem

Filesystem

« SESSION

« STATE

+« CONFIG

« CONTENT

+ FILES

+ CODE

= AP import

« The Config namespace configuration must always be
imported/exported through the API, never edit the files!

e The filesystem is not a good option, and this is the reason
for Drupal 8 to store the active config in database by
default:

= Performance

« Safety
= Security

3ok

Configurables in Drupal 8

« ConfigEntityBase class
« TWO entity namespaces: one for config, one for content

3ok

Working with configuration

Reading and writing configuration

// Get site name for displaying.

$site name = \Drupal::config('system.site')->get('name');

// Get site name for editing.

$editable config = \Drupal::configFactory()->getEditable('system.site');
$site name = $editable config->get('name');

// Set site name.

$editable config->set('name', 'My site')->save();

RIP

variable get() andvariable set() died.

3ok

Information about the
system state

 instance-specific? (e.g., last cron run) = state
« configuration? (e.g., site mail) = config

Site = filesystem + content + configuration + state

3ok

Working with states

Reading and writing states

// Get last cron run timestamp.

$time = \Drupal::state()->get('system.cron last');

// Set cron run timestamp.
\Drupal::state()->set('system.cron last', REQUEST TIME);

3ok

Overriding "on the fly"

« The $conf array is still available as $config

« Useful in settings. local. php:
Differentiate development and production environment

Chapter 8

&

A taste of

Paradigm shift

Multi developer workflow

« Configuration needs to be exported and imported!
« Version all configuration in git. (current site config state)
« Commit to git before synchronizing. (as a backup)

o Import merged configuration before continuing.
(patch (https://www.drupal.org/node/2416109) pending)

https://www.drupal.org/node/2416109

A config = development

« Lock configuration changes on the live site.
config_readonly
(https://www.drupal.org/project/config_readonly)

o If locking is not an option: export and commit to a
dedicated branch, so developers can merge it into the
configuration which will be deployed.

« Best practices yet to be found. Join groups
(https://groups.drupal.org/node/466373)

https://www.drupal.org/project/config_readonly
https://groups.drupal.org/node/466373

Features workflow

If you use features 8.x for deployment
= you are doing it wrong. ™

Re-use configuration for other projects!
Synchronize partial configuration between different sites.
Use features in development environments.

Features workflow

Project A Project B
Production Production
Staging Staging

Development « features » Development

@D
Thank you!

