
From Drupal 7 to Drupal 8

Features vs. Configuration
Management

Fabian Bircher - fabian@nuvole.org

0

Nuvole

a 100% Drupal company

✈ Our Distributed Team

Italy Belgium Czech
Republic

ὄ� Our Clients

Ὃ� Our Projects

International organisations

Institutions

Fast delivery: several developers working simultaneously
on the same site

Frequent configuration changes: need for safe updates

 Challenges We Face

Remote collaboration on site development

Keeping track of all configuration changes during
development

Pushing upgrades to production sites

Chapter 1

ἱ� ἱ� ἱ� ἱ� ἱ�
The Evolution of

Code-Driven Development
in Drupal 8

὆� The long march to a
"code-driven" Drupal

Historically, Drupal has kept both configuration and content
in the same database.
Every time you click in the administrative interface, no record is kept.

Drupal 6: Features appears, with the possibility to export
configuration to PHP code

Drupal 7: Features support is mature, but still relying on
third parties and incomplete

Drupal 8: Configuration and content are separated,
configuration is text-based

  
The database-driven

workflow disadvantages

Default in Drupal 6 and Drupal 7 (core)

Standard approach: you click, you save, Drupal saves to
database and forgets

Bad: Mixing configuration and content

Bad: Losing track of configuration changes

Theoretically still possible in Drupal 8!

 
The Features-driven

workflow disadvantages

A structural flaw: to package configuration into modules,
you need to make it exportable to "code"

Features is very good for packaging, not as good for
exporting; but there's no packaging without exporting

Not everything is exportable/traceable

You must "whitelist" elements to be tracked: you never
have the whole site under control

 
Code-driven is not just

Features

It’s a global technical choice

For example, it includes makefiles and profiles, still
applicable in D8

Keywords: text-based configuration, traceability,
repeatability, reuse

Ἲ�
New in Drupal 8

Configuration Management

Ἲ�
A guided example of

Configuration Management

Ἲ�
Reference Use Case

Modify the configuration of a production site:

Keeping the site online all the time.

Developing/testing the new configuration on a
development copy.

Exporting the configuration changes from development
and importing them into production.

Ἲ� Step 1 of 6

Clone Site to Dev

Production

Install Site

Full backup:
Database

Full Drupal tree

Files

Development

Restore the backup

(or install with
config_installer)

Ἲ� Step 2 of 6

Modify Configuration

Production

Site operates normally:
new users

new content

Development

Ἲ� Step 3 of 6

Export Configuration

Production

Site operates normally:
new users

new content

Development

Ἲ� Step 4 of 6

Import into Staging

Production Development

Ἲ� Step 5 of 6

Review Changes

Production Development

Ἲ� Step 6 of 6

Apply Changes

Production Development

How this would have
worked in Drupal 7

Clone site to development environment

Create a feature exporting the site name variable

Development: update the feature

Transfer the feature to Production

Production: enable/revert the feature

drush
DRUpal SHell: everybody loves!

Drupal 8 ⇔ drush 7

Both not stable yet, but matching beta releases

A new installation method: composer

Ἲ� Step 3 of 6 — Drush Style

Export Configuration

Development

$ drush config-export
The current contents of your export directory
(sites/default/files/config_H6raw/staging) will be deleted. (y/n): y
Configuration successfully exported to [success]
sites/default/files/config_H6raw/staging.

Ἲ� Step 5 of 6 — Drush Style

Review Changes

Production

$ drush config-import --preview=diff
Configuration successfully exported to /tmp/drush_tmp_xy. [success]
diff -u /tmp/drush_tmp_xy/system.site.yml sites/.../staging/system.site.yml
--- /tmp/drush_tmp_xy/system.site.yml
+++ sites/default/files/config_H6raw/staging/system.site.yml
@@ -1,5 +1,5 @@
 uuid: ca04efa4-51bf-4d12-8b00-e7b244b97aef
-name: 'Drupal 8'
+name: 'DDD 2015'
 mail: drupal@example.com
 slogan: ''
 page:
Import the listed configuration changes? (y/n):

Chapter 2


Inner workings of

Configuration Management
and Features

 Use case

Features

A collection of logically
related Drupal elements

Packaged into PHP code,
using hooks

Exportability is a
precondition to packaging

Configuration Management

Reference for the whole site
configuration, development to

production

Ὄ� Configuration format

PHP

Imperative

Interpreted
Can break site if corrupted

Located in folders for
modules

Treated as modules

YAML

Declarative

Parsed
Cannot break anything if corrupted

Located in specific folders
for config

Treated as data (like Rules'
JSON in D7)

 Support

Optional

Modules must offer support
for Features

No guarantees

Mandatory

Core configuration

The only way to supply
configuration

ὒ� Configuration and
modules

Drupal 7

Features are special
modules

Once a Feature is enabled,
its configuration is tracked
forever

Drupal 8

Modules provide initial
values

In this sense, every module
is a Feature

Configuration is decoupled
from modules after
installation

 Components selection

Drupal 7

Explicitly listed in info file

Rest is not tracked

Drupal 8

All configuration is tracked

Configuration is saved per
config entity

Can be individually
imported/exported

Config synchronisation
requires all files to be
present (missing = deleted)

 Configuration staging

Drupal 7

Feature states: normal,
overridden, needs review

Operations: features
update/revert

Diff available

Drupal 8

Active store and staging
store (multiple stores
possible)

Operations: import and
export

Diff available


Drush workflow

Drupal 7

drush features-update

drush features-revert

Drupal 8 (with drush 7.x-dev)

drush cex

drush cim

Ἴ� ⚽
Cross-site compatibility

Drupal 7

Write once, deploy
anywhere

A feature is ready to be
deployed on multiple sites

Drupal 8

Specific to multiple
instances (dev, prod) of the
same site

This is the CMI use case

Configuration Management
relies on UUIDs

 Ὁ�
Boundaries of configuration

Drupal 7

Entities through entity api,
CTools plugins

Variables with Strongarm

Content with
features_uuid
Menu links, custom and
contrib modules can be
problematic

Drupal 8

Configuration

Content

State

All clearly defined

὎� ὎� ὎�
Features done right?

Drupal 7

Not optimal

A bit "forced" at times since
it is not native in Drupal 7

Drupal 8

Clean

Native

Not as powerful as
D7+Features yet

Chapter 3

 
How to build

Re-usable components

 Use case

Drupal 7: Features

Package configuration

Reuse configuration

Focus on efficiency

Drupal 8: CM

Deploy configuration

Tracking configuration

Focus on reliability

We want both, efficiency and reliability

⚠ Drawbacks

Drupal 7: Features

Not designed for
deployment

Used for deployment

It drives people crazy

Drupal 8: CM

Designed for deployment

Not designed for packaging

Possible shortcomings
when creating re-usable
configuration.

 Features 8.x-3.x

Goes back to the core mission of Features: package
functionality for re-use.

No more project specific features!

Under development, alpha available.

Phase2 blog post

Development module, not for production sites using CMI

Announcing Features for Drupal 8
(http://www.phase2technology.com/blog/announcing-
features-for-drupal-8/)

http://www.phase2technology.com/blog/announcing-features-for-drupal-8/

Chapter 4

Ἱ�
Configuration Management

For Developers

 An overview

⇆ API import

The Config namespace configuration must always be
imported/exported through the API, never edit the files!

The filesystem is not a good option, and this is the reason
for Drupal 8 to store the active config in database by
default:

Performance

Safety

Security

⚙
Configurables in Drupal 8

ConfigEntityBase class

Two entity namespaces: one for config, one for content

⚙
Working with configuration

Reading and writing configuration

// Get site name for displaying.
$site_name = \Drupal::config('system.site')->get('name');
// Get site name for editing.
$editable_config = \Drupal::configFactory()->getEditable('system.site');
$site_name = $editable_config->get('name');
// Set site name.
$editable_config->set('name', 'My site')->save();

⛼
variable_get() and variable_set() died.

⚙
Information about the

system state

instance-specific? (e.g., last cron run) → state

configuration? (e.g., site mail) → config

Site = filesystem + content + configuration + state

⚙
Working with states

Reading and writing states

// Get last cron run timestamp.
$time = \Drupal::state()->get('system.cron_last');
// Set cron run timestamp.
\Drupal::state()->set('system.cron_last', REQUEST_TIME);

⚙
Overriding "on the fly"

The $conf array is still available as $config
Useful in settings.local.php:
Differentiate development and production environment

Chapter 8

⚛
A taste of

Paradigm shift

Multi developer workflow

Configuration needs to be exported and imported!

Version all configuration in git. (current site config state)

Commit to git before synchronizing. (as a backup)

Import merged configuration before continuing.
(pending)patch (https://www.drupal.org/node/2416109)

https://www.drupal.org/node/2416109

∆ config = development

Lock configuration changes on the live site.

If locking is not an option: export and commit to a
dedicated branch, so developers can merge it into the
configuration which will be deployed.

Best practices yet to be found. Join

config_readonly
(https://www.drupal.org/project/config_readonly)

groups
(https://groups.drupal.org/node/466373)

https://www.drupal.org/project/config_readonly
https://groups.drupal.org/node/466373

Features workflow

If you use features 8.x for deployment
⇒ you are doing it wrong. ™

Re-use configuration for other projects!

Synchronize partial configuration between different sites.

Use features in development environments.

Features workflow

Project A

Production

Staging

Development

← features →

Project B

Production

Staging

Development

ὄ�
Thank you!

